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THEORETICAL MODEL OF THE DIURNAL VARIATIONS
OF THE TEMPERATURE, DENSITY, AND WINDS IN
THE EQUATORIAL THERMOSPHERE OF THE EARTH

DURING THE EQUINOX

M.N. Izakov, S.K. Morozov
and E.E. Schnol'

ABSTRACT. A model of the diurnal variations
of the structure and dynamics of the earth's
thermosphere is constructed for altitudes of
120-320 km by means of a numerical solution
of a system of hydrodynamic equations. The
basic features of the model agree with exper-
imental data. A substantial interconnection
is shown between the thermal regime:and I
movements. It is found that super-rotation ]
(presence of mean daily west-east wind com-
ponents) is a consequence of the influence
of the daily variations of ion concentrations
(due to the slowing down of ions) upon the
movement of neutral particles. In the branches
of the two-dimensional model arises a shock
wave, dividing the area where the gas moves
relative to the heat source with supersonic and
subsonic velocities.

INTRODUCTION I /3*

In a series of theoretical models of the thermosphere, it

thermal regime and dynamics are considered separately, in view ofj

the complexity of the overall problem. Thus, in the models of.

Harris and Priester [1] and in later analogous models [2,3] in

the calculation of diurnal variations of temperature density,

the horizontal velocity relative to the earth (wind velocity) was

set equal to zero. On the other hand, in calculations of models

of global distribution of winds in the thermosphere [4-7],

the density and temperature distributions were pre-assigied.

*Numbers in the right-hand margin indicate foreign pagination.
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However, from a comparison of the results of calculations from I

experiments and from theoretical evaluations,it became clear

that a sufficiently complete description of the structure and

dynamics of the thermosphere is possible only in their intercon-

nection [8-12]. Attempts were undertaken at solutions to this

problem with a number of approximations and assumptions [13-16],

however the problem is still far from being solved.

In the aforementioned authors' works, a system of equations

was formulated which is suitable for a description of the struc-

ture and dynamics of the thermosphere [10-12], the function of

thermosphere heating by shortwave solar radiation was studied

[19-21], and a method is developed for solving this system in /4

two-dimensional space for the description of diurnal ]
variations in the equatorial thermosphere during the equinox

[16]. In the present study, results are presented of the solutioi

.of a two-dimensional model with a refined heat source I
and with the effect of ionic friction. The obtained model

of diurnal variations agrees in its basic features with experi-

mental data.

I. STATEMENT OF THE PROBLEM

I.1. Initial Equations. As was shown in [10-12], the struc-

ture and dynamics of the thermosphere may be described by hydro-

dynamic equations in Navier-Stokes approximations at least to

altitudes of 300-500 km (where K2 , < 1, K being the Knudsen number

K = Z/H, k being the free path length of the molecule and H, the

altitude scale).-

In view of the complexity of the overall problem, it is ad-

visable initially to examine the two-dimensional space problem

for an equinox period. For this we shall assume a fixed spheri-

cal system of ordinates with its originiat the center of the earth

(T is the geocentric distance, ¢ is the longitudinal angle from

west to east, 0 is the latitudinal angle wherein the axis = 0,
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S= 0 directed along the earth-sun line) and we shall examine
processes occurring in the equatorial plane 0 = 0. Then the
equations of continuity, motion, internal energy, and equations

of state are written in the form [12]:

hcat si, d(2)

vG, T hv ) (3) /5

. .+ , (4)

po30 . (5)

where t is time, p, T, p, q are respectively density, temperature,

pressure, and molecular weight of the gas, R0 is the universal

gas constant,n., K are the coefficients of viscosity and heat con-

ductivity of the gas, pa, vi are the density and velocity of ions,

Vin is the frequency of non-neutral collisions, QST' QIR are the

heat source and heat sink, determined below.

We note that these equations are analogous with the equations

of the boundary layer [10,12] with the difference that there the
pressure is constant in the direction perpendicular to the predomi-

nant direction of motion, and here it is variable (with height).

Excluding from consideration the tatitudinal coordinate e, we

shall neglect the influence of meridian currents on the processes

in the equatorial plane. The feasibility of this assumption is
determined by the symmetry of the source QST relative to the equator

in an equinox period when the subsolar point lies on the equator, s
a consequence of which we may assume that for e = 0, p/se 0 and

v = 0. Moreover, thQ- simplifying assumption is:rf;ad that



D v /9 = 0 when 0 = 0. The fact that wind calculations are made

on more simplified schemes serves as a basis for this, but taking

8 into account, the small quantities av /ao are yielded in the
vicinity of the equator [6,7].

In calculations made thus far, the diurnal variations of the /6

composition of the thermosphere have not yet been taken into ac-

count,_ and therefore the quantities p, n, K are taken as functions

of altitude from the available experimental data on the altitude

distributions of concentrations of basic atmospheric components.

Since the diurnal variations of p in the upper limit does not exceed

certain percentages, this simplification cannot significantly chang

the picture of diurnal variations of p, T, v.

In view of the fact that the thin layer AT = 200 km is exam-
iniied in comparison with the radius of the earth R , the follow-

ing two insignificant simplifications were made. Firstly, the

gravitational force was assumed constant (g = const); secondly,

in equations (1-4) terms were omitted which were related to the

sphericity of the problem having orders of AT/Re., after which

the equations assumed the following form:

__ 0___!+ ___ _, (6)

X19 L (7)

2-n (8)

P= /,C) T, (10)
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where B(T) = R 0/p(T), To = R o + h0 , h0 being the altitude of the /7
e

lower boundary of the area examined.

1.2. Heat Source and Heat Sink. According to available

data, the fundamental heat source in the thermosphere is the ener-

gy of the shortwave solar radiation (ultraviolet and x-ray in a
range from 30 to 1800 A). Part of this energy is converted to heat

as a result of a large number of elementary processes of interaction

of photons with particles of the atmosphere (ionization, dissocia-

tion-, turbulence, impact deactivation)- 191,.

We shall assume that for the study of diurnal variations we

may disregard slow changes in the volume of the solar flux, since

its regular short-term changes have a period of about 27 days.

Therefore we may consider the spectral flux of solar radiation

FX, independent of time and seek a stationary solution -of our

system of equations (1-5), in the fixed system of coordinates

which we are using.

-'The source of heat, due to absorption of the shortwave s/olar ra-

diation-,-T, may bewr en.-in the following form [13-21]: /

1000A

IoT --- 11

- 13904 l J . . . . . .. . . . . . . .

where FX is the spectral flux of the shortwave solar radiation,
n., Ha are the concentration and altitude scales of the a-th

component (a = 1, 2, 3 since here'exist basic

components of the thermosphere Nz, 02, 0), X is the zenith an-

gle of the sun (when X 7>7O0 iffsteadof se' x, a mor compex-

- -, is the \  - /8

cross-section of the absorption of photons by particles of

the a-th component. As was shown in [191],we may with good ac-

curacy, set I = 0.3. At the same time, according to approximate

evaluations, E- =0.6, whi-chis also close to the evaluation

of Johnson and Gotlieb [22].
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In our calculations the flux QST was approximated by a func-

tion in the form

W. eP-fTe ) (12)

where the constants A and B were.chosen to approximate QST(T)
to an exact ratio given/by equation (11).

The heat sink, due to infrared radiation at X = 63 pm

was taken in accordance with [23] in the form:

6j, _r P ( VI r) I)
Q2R 7 (13)

eXP(-wT)+w~XP(44X T)

where w., w are the energy and statistical weight of the sub-

levels of the fundamental level of the oxygen atom P 0 I1 2; A12

is the Einstein coefficient; ((T) is a screening function taking

into account secondary absorption of infrared photons; in the

given calculation the simplifying assumption was made 5 = 0.8

which at the altitudes examined was close to the results of cal-

culations in [24,25].

The form of the ratio QST/p according to the exact

formula (11) and the approximate formula (12) is presented in

Figure 1.

Concerning other possible energy sources, calculations show
that over the equator in magnetically calm periods, they are small

in comparison with the fundamental source QST. Blamont's data

[26] also confirms this, in that, even at the time of a magnetic /9
storm, changes in temperature in the equatorial re6 gion were

small although in the auroral regions they were substantial even

on magnetically calm days. A certain role may be played, in the

lower atmosphere, by energy brought by gravitational waves from

the mesophere [27-29]. The contribution of this source may be

6



studied within the confines of our model which we also intend to

make in the near future; however, in view of the significant diver-

gence of data on its value, still further study is required.

1.3. Effect of Ions. We shall examine in more detail the

matter of the effect of ions on the neutral components of the

thermosphere, since this effect (the so-called ionic braking or

ionic friction), as we shall see below, turns out to be very

substantial.

The velocity of the motion of ions in the thermosphere Vi
may differ substantially from the velocity of the neutral parti-

cles'V due to the interaction of ions with the geomagnetic field

B. This interaction is described by the Lorentz force entering

in the equation of motion for ions, which in rotation together

with the.earth yields a system of coordinates that may assume the

form:

Olt + 3 6 2 (14)

where wi = eB/mic is the gyrofrequency of the ions;.,eB is the

unit vector in the direction B; E is the electric field intensi-

ty. Upon the ratio of the two last terms in (14) depends whether

ions are entrained by the magnetic field (when w2 >> v ni) or by

neutral particles (when vni >>mi). Actually, during examination

of large-scale movements in the equatorial ionosphere, the latter

two members are basic in value [30], and neglecting the rest and /10

assuming in the equatorial region ViB, we obtain:

-Zr V'.f (15)
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Since in the ionosphere at altitudes of h of, 100, 200 and
300 km, respectively, wi = 160, 190 and 210 sec' , and v = 5800, 4

and 0.5 sec 1 [31], then near 100 km, the ions are entrained by
neutral particles and at h > 130 km the ions practically do not

move across the lines of force B. Since we are considering h > 120

km, and moreover we are assuming that at h = 120 km,"V = T1,

(see below), we may assume with a good approximationVVi = ,

where 0 is the angular velocity of the earth's rotation, i.e.

the ions on the average move along the lines of force B.

The velocity of the exchange of pulses between particles of

different types a and 8 in a mixture of gases may be described

'by terms in the form [32, 33]

aT., t~ t <1 p (1<U~](16)

where m = mm /(m + m) is the derived mass, a is the trans-

mission cross section of the pulse, vT is the average thermal ve-

locity, n , n are the numerical densities of the particles. The

ajo unt of energy transformed iht~--h-eat in this dissipation process

is expressed in the form [-331]:

in 1P~~. 7  (17)

Since we may assume with great accuracy that the mass of th e

neutral particles and the ions equals mi 
= mn = m, then the mass

is min - m/2. It is true since we are not considering the com-in
position in detail, we are using the average mass of the neutral /i

particles and the average mass of ions, which in view of the differ

ent variations of neutral particle and ion composition with altitud

may differ somewhat,--but this-differ-ence and the error due to this

are small. Furthermore, taking into account the condition of quasi-

neutrality (which at h > 100 km, where the negative ions are ex-

tremely few, hs__the_ form n-+ __nz=the_ concentration _ofpositive

ions is equal to the concentration of electrons), we may obtain for

8



the interaction of ions and neutral particles from (16)-affd (17):

P j~j (18)

J4~P~?4ie (i~ v).(19)

The matter of the cross-section of elastic collisions of

ions with neutral particles cin was considered recently in [34,35]

in which attention was paid to the polarization of neutral parti-

cles by ions and to the process of overcharging. According to

[35], the value vt = vi /n = inVT = 10- 9cm 3/sec (i.e. appromi-in in GinV =
mately an order larger than corresponding value of neutral-neutral

collisions), and for collisions of ions with foreign neutral par-

ticles, vn is not a function of temperature, but for collisionsin
with "native" neutral particles, it depends weakly upon it. Thus,

for example:
Y ( ,o0) = - ,0o.o- 0 ,

)i' (0+,: j& ) = I,08,iO-9 (O2 , J ) = 0B9"I0 -9 ;

( (02+ , 0) = 0 75.o10-9; -*(0o+ , 0) = I.86*IO- 9

( /IO)',37; V(o2, 02)o = I o.Io-9  (A /1000OB

V,( ,j ) 2811*Io-9 ( R /1000)0.38,

where TR = m.in (T./m. + T /m ). Taking into account these data,R i i n n
we may accept with small errorvt = 1.0 10-'9 cm3 /sec.

in

The values ne(t,h) were assigned by means of a certain /12

smoothing of the data of the ionosphere model [36] and excluding

nocturnal increases ne. The function of n (th)-accented in the
e e

present calculations is presented in Figure 2.

It should be noted that in [16] the term describing ion

friction was strongly overestimated and exerted practically no influ

ence on the solution.

9



1.4. Boundaries of the Examined Area and Boundary Condi-

tions. The upper boundary of the examined area T i is desirably

placed as high as possible in order to completely encompass

the processes occurring here; however, it should lie in the

region where the hydrodynamic equations are applicible. More-

over, T, should not lie excessively low, so that heat fluxes and

mass fluxes acting upon it may be neglected, which substantially

simplifies the problem.

From experiments it is known [37,38] that in the thermo-

sphere at altitudes higher than 250-350 km, the temperature ceases'

to vary with altitude, which (within the limitations of the coef-

ficient of heat conductivity K(T,u)) also ensures the absence of

heat flux.

We further assume that at sufficiently high altitudes the

horizontal component of velocity ceases to vary with altitude.

Thus, we have assumed the following two conditions for the

upper boundary: /
/13

(20)

A third boundary condition is a consequence of the condition

of the absence of any mass flux at a sufficiently high altitude.

Its mathematical description requires additional treatment which

is presented in section 3.2.

The lower boundary T 0 should be set around 85-90 km, where

the diurnal variations of p and T are small, according to avail-

able experimental data, and where wind velocities are also small

in comparison with their velocities in the range of altitudes

10



examined [37]. However, the presence of complex and insufficiently

studied turbulent processes at altitudes h 105 + 10 km, makes it

-adv-isable--in---the-first-stage-to-study-the-region h0 at a high

altitude (in the present calculations h0 = 120 km). Then conditions

were set for the absence of diurnal variations of p and T, and

the absence of wind.

T(T 0 ) = const,

p(To) = const, (21)

v(To) = o .

It is obvious that an increase in T o somewhat decreases the diur-

nal variations near the lower boundary of our model.

Some preliminary study of the influence of lower boundary

conditions on the solution was conducted by means of a substan- .

tial variation of one of them in one of the variants of the cal- /14

culation, namely the condition p(T0 ) = const was substituted by:

v(To) = 0.

2. STATEMENT OF THE COMPUTATIONAL PROBLEM.

As was already shown, we have assigned a constant flux 0f

solar radiation Fm and we are seeking a time-independent solu-

tion of the system ii"i(6-10). Sucha stationary solution will

be constant in time'. In order to set up a clear mathematical

and computational problem, it is necessary to:

(a) assign certain boundary conditions when Tr = To (on the

lower boundary of the layer examined) and when T = Ti (on the up-

per boundary);

'O10n another possibility, see supplement 2.
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(b) select suitable initial data. After this we may expect

that the solution of the time problem will approach a certain

stationary regime.

2.1. Features of the Computational Problem. Inasmuch as we

shall now examine only two basic variables, our (two-dimensional)

gas-dynamic problem is rather simple. However, the following ra-

dical difference of this problem from the more traditional prob-

lems yields a non-trivial computational problem. The density in

the interval T0 < T < TI varies by 10
3 - 10 4 times. The coef-

ficients of the kinematic viscosity (v) and thermal conductivity

(X) vary by the same amount.

Here in no case should the behavior of 1% (or even 0.1%) of

the total mass be neglected. Much to the contrary. The results

are more interesting (and more reliable) when the upper boundary

is far from the (arbitrarily determined) lower boundary. A

second, less significant feature is inherent to all equations of

the "boundary layer" type. The system in (6-10) is not a "nor-

mal" system of equations with partial derivatives: it cannot be

solved relative to the derivatives of the unknown functions in

time. These features oblige great care in selecting boundary

and initial conditions and leave a substantial imprint on the

computational algorithm.

Finally, we note that the problem as a whole has a "closed"

character: incipient disturbances are not carried beyond the

limits of the region examined. This circumstance increases the time

necessary for leaving a stationary regime.

2.2. Boundary Conditions. In the system in (6-10) there

are four differential equations, two of which are of the second

order in T. It is necessary, therefore, to have six boundary

conditions.

12



In the lower boundary, when T = T , the following three con-
0

ditions were chosen (see paragraph 1.4):

(1) T(-r , ; t) = T = const.
0 0

(2) v (T , t) T * 0
• 0 0

(3 a) vT , .; t = 0 or C3b) pr = t = const.

(Q is the angular velocity of the earth!s rotation, (3a and 3b

are not equivalent).

A natural requirement for the positioning of the upper /15
boundary T is: for further increases in T the solution should

1 1
not vary significantly 2 . Thus, a correct statement of the boun-

dary condition above is related to the asymptotic solution of

the system in (6-10) when T m.

As we have already stated (see paragraph 1.4), on the upper

boundary we assume:

(20

The following considerations elucidate the concept of these con-

ditions. Let us assume that when T - m, the restrictions remain:

2 In this, of course, we are digressing from the fact that the equa-
tions themselves (6-10) are correct to a reasonable accurary only
to a certain altitude hi. In an ideal mathematical problem, the
equations are naturally considered in the region To0 < < -, but
for an interpretation of the results, the region is restricted to

T < T <R +h.
- - e

13



Th-n z ITan expone~ntially

Hence: (1

(also exponentially, rapidly).

The convergence of the heat and the pulse 3 fluxes to zero

yields: T1 = r2 =0. Finally, for a constant composition and

temperatur.e ., (qo) , - (i 'and, this means that when

r -*., it is necessary that

Thus, (20) simulates the absence of fluxes through the upper

boundary for the heat and (horizontal component) pulse. For simila- /17

ting the conditions of the absence of mass flux:

(22)

knowledge of the asymptotic behavior of p and v is required.

For p it is obvious: when T - - the density p diminishes ex-

ponentially. More accurately, if T +' T and the molecular weight

M + M., then:

e(6zt4 aco~vt) 6=Pz (23a)

or

3 The tensor 1 components of the pulse flux is:, - V,

t 14

14



6- for (23b)

The velocity v behaves mo/re precisely. Namely, during the

satisfaction of equation (22), v linearly approaches .

Taking into account (24) (see supplement 1), we select as the

final (sixth) boundary condition:

- ' ~ ' (25)

We note that (22) follows in turn from (24) and (23).

Thus the boundary condition (25) which we have set is an

approximate description of requirement (22) -- the absence of

mass flux at infinity.

NOTES

1. It is not mathematically obvious where it is necessary

to place the inadequate boundary conditions. A model examination

of this problem (in linearized equations and in fixed coefficients)

and numerical experiments consistently demand one more condition

above, but not below.

2. The trivial substitution of (22) in the condition

S  = Ti = 0, as may easily be seen, is inadmissable.
T T = T 1

3. Condition (25) contains a second derivative; equations

(6-10) contain only the first derivative av /aDT. In this sense

(25) is a non-standard condition. We note that the asymptotic (24)

is typical even for ordinary equations of the boundary layer (where

p is not a function of T), but there the problems of the sixth

boundary condition do not arise.
15



2.3. Selection of initial Data. Excluding the pressure

(p = B(T) * p * T) in equations (6-9), we obtain a syste-m of-

four equations for four unknown-functions p, T, v T and v .

v /aT does not enter them. It is clear, therefore, that oneT

may not assign v arbitrarily when t = 0. Further, p and T in

each moment of time (including even when t = 0) are related by the

relationship in (8).

Therefore as initial conditions for system (6-9), it is

sufficient to assign two functions T(T, ; 0) and v (T, $; 0) and

the value of the density in the lower boundary p(To, ; 0) when

t = 0.

In order to accelerate the determination process it is de-

sirable to have a preliminary coordination of the temperature

profiles and heat-evaluation. We selected the initial data by the

following means. For each variant we preliminarily solved a

simplified problem in which the horizontal winds are absent (see

supplement 2). The solution of this problem-function

T(T, p) * p(T0 , p) is used as the initial data. It is further

assumed that v (T, p, 0) _ To - Q. The determination time is, with

a reasonable degree of accuracy 4 from 10 to 30 days.

3. COMPUTATIONAL ALGORITHMS

Equations (6-9) are rewritten for the variables v,, v T,

a(a = In p/p 0). Later, for numerical solution, the differential

equations were replaced by the differences. A simpler double-

layered implicit difference scheme was used. More accurately, the

quantities v,, T, a wereaassigned to the "integral" layers

t = tn, and the quantity v was assigned to the semi-integral

layers t = tn + x/2. = tn + T/2. The difference scheme is

'4'For example, IT (tn + days) - T(tn) I < 0.01 T(tn).

16



formally implicit: for determination of the quantities Tn + l

n+l n+l n+1/2 n n  nS , a , (for the known T , , ), we obtain a sys-

tem of nonlinear difference equations. It is solved by itera-

tion wherein the 'terms corresponding to the angular derivatives

are taken from the aforementioned iterations. Thus, in fact,
we have in angular variables more or less complex (as a func- J
tion of the number of iterations) implicit schemes with all of

the resultant consequences.

Let us dwell briefly on several details. /20

3.1. Difference Scheme. For an approximation of the deriva-

tives along the vertical in equations of the second order (7) and

(9), an implicit six-point scheme was selected. The difference

approximations are:

Sf3 2~ J(26)

4 ~ r,~i4~f,2 r 0)1(27)

Here the upper index "I" designates that the quantity is

taken at the upper layer tn + T, and the index "0" from the layer

tn . For equation (6), an implicit four-point scheme was used.

Equation (8) (on each layer) is written for two neighboring points.

The system is vertically non--uniform-: the points bunching up

downwards

The angular derivatives are approximated analogously.

5More accurately, instead of T, z = zCT) (Z'T >> z' ) is used.

The z-spacing is constant. I
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In the derivatives of the example, the calculations were

conducted on a 25 by 20 network for "1p" and "'T", respectively. J

3.2. Organization of Iterations. In the recurrent "S + 1"

iteration, the "angular" derivativesaf/ are taken from the

aforementioned iterations. More accurately:

Thus a system of nonlinear difference equations in the given iter-

ation degenerates into a one-dimensional system on each "ray" /21

= k Corresponding one-dimensional boundary problems are

solved by several internal processes of successive approximations

--by iteration of "T". The system may be stable (by linear cri-

teria) if the number of iterations S max> 2. For Smax= 2, the

condition of stability is:

where a is the speed of sound.

3.3. Linearization of difference equations. The one-dimension-

al difference system.on the ray ideally (inasmuch')as the known quan-

tities are close to the initial values of the aforementioned

layer) should be solved by Newton's method--with complete linear-

ization in each iteration. It is known that such a complete lin-

earization is almost never done, since it leads to a boundary

problem for a system of engaged linear equations. In our case,

the equations are very strongly connected 6 , so that the simulta-

neous solution of linear equations is unavoidable. Therefore we

shall produce a practically complete linearization. For example,

6One of the reasons for this is the absence of.)a derivative with
respect to "t" in equation (8).
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in the successive j-th iteration member, the corresponding mem-

ber in difference equations u(DY/Dr) is written in the form:

Here [3a/Dr] is the corresponding resonance operator.

3.4. Solution of Uniform Linear Boundary Problems on a Ray. /22

The system of linear difference equations solved in the j-th in-

ternal iteration (according to T) consists of two equations of

the first order and two equations of the second order. As each

(well-defined) system of difference equations, it may be solved

by the exclusion method with the selection of the main element by

column, or using some other universal algorithm. We used a cer-

tain variant of the exclusion method in which the order of exclu-

sion is prescribed7 . Such an algorithm is more economical,

however its suitability in the final analysis is verified ex-

perimentally.

4. RESULTS AND THEIR TREATMENT

Two conditions were considered--the first for high and the

second for low solar activity. In the first case the flux FX

measured by Hinteregger [39] was used for a medium-high solar

activity corresponding to a flux of the decimetric solar radia-
-22 2-

-tion F1 0 .7 -15-0. -10o- - watts/m -HZ. For low solar activity

there are not now such reliable values of FX,, since in [391, the

results of the aforementioned author are placed in doubt. Therefore

for low solar activi.ty, a value of Fx, was taken in which the-

current in the ionization continuum was for each value of A one-

half that of the first case. Of course this is a rather crude

approximation since the variations of spectral flux in solar

SSee supplement 3.
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activity are extremely complex [39,40].

The diurnal variations of temperature and density at alti- /23

tudes of 320 and 150 km are represented in Figure 3, where com-

plex curves plot the basic variant, the dot-dash curves plot

the variant with ion friction, 1/10-th the normal, the dots plot

the variant without horizontal motion (v = 0); moreover, the

dotted lines show the variations with additional viscosity, the

meaning of which will be shown below. The altitude profiles T

and p for the first case are presented in Figure 4.

From Figures 3 and 4 it is evident that the temperature at

320 km in the area of the isotherm varies from 900 to 1000 to

1200 to 1300 K, and the density, for example, from 2.5 * 10 -
1

to 5 * 10 - 1 4 g/cm'. At 150 km the variation is significantly

less; however, we remember that it may be somewhat reduced here

due to approximate boundary conditions at 120 km.

It is also evident that the maximum temperatures and den-

sities occur at the same time. Great diversification of phases

during certain hours is.not observed8 . We note immediately that

it is true that this result is obtained without taking into ac-

count the dynamic influence of the mesosphere.

An important conclusion may be drawn from a comparison of

the data of the different variants: there exists an extremely

strong influence of the motion (including ion motion) upon the

thermal regime of the thermosphere producing it. Actually, if

there were no winds the thermosphere would heat up practically

to sunset (dotted line) and for stronger winds which would

8 Such diversification of phases was assumed for the agreement of
data on the diurnal course of density according to the braking of
the satellites and on the diurnal course of temperature according
to incoherent scattering (see for example [41]).
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develop during low ion friction, the maximum T and p would be

close to midday (dot-dash line), then for the most probable /24

conditions (solid line) the maximum T and p lie in 16-17 hours,

which is close to experimental data obtained by the method of

incoherent radiowave scattering [42-44].

As a consequence of this influence, there is also a second

important fact: the shape of the curves describing the diurnal

variations including the positions of maxima and minima may

vary for a change in conditions. Actually, the random variations

of the source and as a result, variations of wind, and also the

ion concentration--all this reflects on the variations of p and

T. (This is, as it were, the "weather" of the thermosphere as

contrasted with "climate", describing the most probably function).

For example, for ion braking amounting to 1/10-th the normal

(the dot-dash line), significantly earlier maxima of T and p take

place--around 13 hours--and a noticeably differing form of the

diurnal course (a very broad, almost symmetrical T, a sharper

maximum p, with a more rapid falling off of the latter after the

maximum; this also takes place to a lesser degree in the basic

variant). Reverse tendencies from the most probable diurnal course

are possible; for example, for an increase in the ion concentra-

tion, the maximum will be shifted to a later time and the arbitrary

course will approach the dotted line.

The fact of the variability of the shape of the diurnal varia-

tion curves and of the position of the maxima confirms well the

data of incoherent scattering and several other experimental re-

sults [42-44]. Also the absolute temperature value obtained in

these calculations [44] satisfactorily agree with experimental

data, while the values of density are somewhat higher than those

in [38], probably due to the approximation of u(h).

The interesting diurnal variations of wind obtained in the /25

model (Fig. 5--dependent upon time at altitudes of 320 and 150

km; Fig. 6--altitude profiles for maxima and minima: winds from
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east to west with velocities of 30-150 m/sec prevailing in the

morning and during the day (to the maximum of p and T) shift in

the east-west direction with velocities to 300-350 m/sec. As

a consequence of this the average daily velocity v is directed

from west to east. This fact was noted by King-Hele according

to the variations of the slope of the satellite orbit [45-47]

and which he called super-rotation (since this fact signifies

that the'atmosphere at these altitudes on the average surpasses

the rotation of the earth). From these data it follows that the

reason for super-rotation (in any case, the basic reason) is the

influence of daily variations in the ion concentration through

ion breaking: the large ion concentration in the day leads to

a larger decrease in the daily values of winds than those of the

night, and the latter are directed from west to east. This ex-

planation affirms the data of the first variant of our calcula-

tions [16].wherethe virtual absence of ion breaking produced an

absence of super-rotation. The ratio of the mean daily velocity

of rotation of the atmosphere to its rotation velocity as a whole

together with the earth at an altitude of 320 km in our model is

A = 1.15 - 1.2, and according to the data of King-Hele, A = 1.3

[47]. At an altitude of 150 km, in both cases, A = 1.1 (see Fig.

7).

The vertical velocities v are directed upward during the day

and downward during the night, and reach 2 m/sec. They strongly

affect the thermal regime: adiabatic heating and cooling of the

gas during its lowering and rising in the gravitational field of

the earth with such velocities is comparable to the heating of

solar radiation. In particular, adiabatic heating during the de-

scent of the gas may explain the somewhat slower decrease in /26

T after the maximum in comparison with p, and also the beginning

of the entries of T after the minimum even at night when the

solar source is absent.

One more feature of the diurnal variations of winds in our

model which have already been noted in [16] is the formation of
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shock wave where the mach number calculated by the velocity of

motion of the gas relative to the heat source (v + Qi) is great-

er than one. Such a shock wave takes place at around 0-3 hours.

Due to the presence of the shock wave a complete determination

was not managed, and the calculation was conducted up to the for-

mation of the shock wave.

A complete determination was obtained in a calculation with

additional viscocity which may be introduced on the basis of the

following hypothesis. Since the motions in the thermosphere take

place with large Reynolds numbers (Re = 107 - 104as a function

of altitude), consequently the motions may be unstable and large-

scale turbulence may arise. We note that large-scale two-dimen-

sional turbulence in the troposphere (the elements of which are

cyclones and anti-cyclones) were studied in articles [48, 49].

Blamont's data [26] treats the possibility of the existence of

large-scale two-dimensional turbulence in the thermosphere which,

measured with a satellite, the temperature at an altitude of about

260 km, detected its irregular variations on the order of + 200

degrees (contributing to the diurnal variations), formed in an

area with a space scale on the order of 104 km. If the temperature

fluctuations are interpreted as a reflection of thelarge-scale two-

dimensional turbulence with a characteristic space scale L n 109

3cm and a characteristic velocityv 5.10 cm/sec as a consequence

of this the coefficient of turbulent viscocity is taken as
12 - 2

VTLVa " 10 1 2 s/Nec,substituting inequation (2 the member . 7
VT * v , then a variant is obtained (represented by the dotted 1/27
T 2 2,

line in Fig. 3-6), in which the shock wave disappears but in the re-

mainder the figure does not substantially change. This variant was

calculated to the complete determination of the periodi'c regime, which,
as noted-above, occurred for 10-15 days.

In the calculations presented the effect of change of the lower

boundary conditions was studied: two variants were tested: 1)

p(TO) = cont; 2)/vT (T0 ) = 0 . The first condition seems to be more
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jstified ,although,-as--is-known, it is best fulfilled__at aound

90 km [37]. A comparison of these two variants shows that the influ-

ence of such variation of conditions on the lower boundary is very

aubstantial at an altitude of 150 km and negligibly small at 320 km.

The results of calculation of the second condition for low

solar activity are shown in Figs. 8 and 9. Here also are obtained

temperature values close to the experimental values from 600 to

8000K (cf. [43]); there are also some exa Arations of density in Al

the upper part of the altitude range examined.

CONCLUSION

On the basis of the results of calculations presented and com-

parisons of these with the experimental data, it seems possible to

draw the following basic conclusions on the diurnal variations in

the atmosphere:

1. There exists an extremely strong interconnection between

horizontal and vertical motion of gas (including the motion of ions)

and variations of temperature and density in the thermosphere.

2. There is a mean daily west-east component of velocity

(super-rotation phenomenon), being a consequence of the influence

of the diurnal variations in the ion concentration to ion breaking /28

upon the motion of neutral particles.

3. The motions induced variations in the shape of curves des-

cribing the diurnal variations of temperature and density wherein

the maximum may for different conditions shift from its most pro-

bable position by several hours both to earlier hours and to later

hours. The most probable position of the maximum of the diurnal

course of temperature and density is 15-17 hours; the minimum is

at 2-3 hours local time.

A substantial difference in the phase of diurnal variations

of temperature and density is unlikely. Yet, if it does take

place, its cause may be a dynamic influence of the mesosphere.

4. In the two-dimensional model, in the diurnal distribu-

tion of wind, a shock wave is produced in the area where the gas

moves relative to the peak force, with supersonic velocities. Shock

waves disappear in the presence of a large-scale horizontal tur-
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bulence (although the area of large horizontal wind gradients

remains).

5. As a comparison of experimental and calculated tempera-

ture values indicates, the fuller short-wave radiation is the basic

heat source in the equatorial thermosphere in the magnetically calm

periods.

SUPPLEMENT 1 /29

Notation (with no strict pretension to rigorousness) the

derivation of formulas (23) and (24).

From (8) and (10) we have (o=( )

AT T T

or

Hence - - 23)

' ~~~G ,-t-(, >r

It may be shown that e approaches zero exponentially:

K- ,'.t)I -C( t) e p(-,

Further, from the discontinuity equation (6):
4g + - A 2 6 + 9 _

Inserting (23)*, we obtain

>,-- - - ---- . ii, + + .

here

2-_0 t +,r' op23))

*We are assuming, of course, that the asymptotic formulas may be

differentiated with respect to t and to 4.
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Hence xPj 5
To 1 o0

Condition (22) yields: C = 0. /30

For the remaining unique solution:

Here ai -/ac,=-- , . All E (exponentially) approach

zero for T .

SUPPLEMENT 2

For finding the stationary solution of the system (6-10) it

seems possible to proceed thus. Set immediately the derivatives

with respect to time equal to zero and for the system obtained

solve the Cauchy problem for - since this is done in the theory

of the stationary boundary layer.

In such a process the variable d plays the role of time,

so that this numerical problem is spatially one-dimensional, i.e.

much simpler than the overall (non-stationary) problem.

Here, of course, one should not be restricted to finding so-

lutions in the interval o .4 < 211, but some number of evolutions

should be made for obtaining functions periodic in .

We made a detailed attempt in the first stage of the work.

It turned out that in this manner it is possible to find a solu-

tion which is a continuous function of c. A solution containing

shock waves may not be found in this manner, and we necessarily

returned to an examination of the non-stationary equations (6-10).

We note that the "motion relative to4 " procedure is always

applied in the solution of a simplified variation of the problem

- for the absence of horizontal winds. We select from the system /31

(6-10) equation (7) and set v = 2.To in the remaining equation.

Then the stationary solution in which we are interested is satis-

fied by equations
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' _,..r __ ._% (g~'

O + (S-i)

'ap -_. P f)p .

A solution of this system was obtained with sufficient

accuracy for 10-15 complete evolutions.

The functions obtained were used as initial conditions in

solution of the overall system (6-10). /31

SUPPLEMENT 3*

Solution of One-Dimensional Difference Boundary Problems

1. In the solution of the boundary problem where a system

of linear difference equations, a transposition of boundary con-

ditions is performed implicitly or explicitly. We remember the

idea of boundary conditions transposition in the example of the

one-dimensional system of difference equations of the first order:

Here k and B k are matrices, x = a +kh , fi is the n-dimensional

vector: u r .

We may arbitrarily define u(xk) c n for some k and u(x) will

be completely determined**.

Now let some linear boundary conditions be given: e at the left/32

p at the right (e + p = n). We shall examine all solutions of

(s-2) satisfying the left boundary condition. They form a linear

space*** of dimension n-e = p. The same values of these solutions

in the points xk - U(x ) are not arbitrary but belong to some space

*Calculated on a special computer.
**It is assumed that Ak and Bk are non-degenerate.
***More exactly, for non-uniform boundary conditions - a hyperplane
(not passing through zero).
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Equation (S-2~_,makes it possible, by knowing R*(xk), to find

R+(xk+1)] and in the same way to retrace the influence of the left

boundary conditions on the whole segment (a, b). When k= K we

obtain:

1) U(xk)CRP+ (xK) as a consequence of the left boundary con-

ditions;

2) U(xK) satisfies p, with the right boundary conditions.

Hence U(xk) = Uk is found.

Now, using (S-2), we may successivel find

Uk-1 Uk-2 I ...... U

WI shall leave here without treatment of the computational

stability of the described procedure. We note only that for an "in-

verse course" in the general case it is necessary to avoid going

out (as a result of errors of rounding off) of the spaces R*(xk):

beyond these spaces the solution of the Cauchy problem (from right

to left) is unstable.

2. The clearest idea of boundary conditions transfer results

in conditions where the space R+(xk) is found explicitly. In this

the duality may obtain:

a) Let R+(xk) be the "basis"*

b) Let R+(xk) be assigned as a system of equations.

In the case a) one should see to it that the bases are not /33

too obliquely angled. A corresponding process was suggested and

founded by Godunov (see [50 and 51].

Method b) is realized for a very extended particular case:

one difference equation of a second order?
a4 C L{- 17 -

Equation (S-3) may be rewritten in the form of a system of

*The entire P+1 vector: one of the hyperplaces and p lie in the

space parallel to it.
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two equations of the first order (S-2), setting

For (.S-3) a method of solution called the "die" method (cf.

[52]) is often used.

In the first stage of this method a recurrent relation is

sought as a consequence of the left boundary condition:

%,t V, .+.. , (S-4)

In the second stage, from (D-4), U is found in the series

,. 0.

Rewriting (D-4) in the form

- 1  4
K t +1 , we see that (S -4) is an

equation of the spaceR -*(xk+l) in the given case, a line in the

two-dimensional space R2 .

On the other hand, we note that the "die" method is a varia-

tion on the exclusion method for system (S-3) considered simply

as a system of linear equations. More accurately, this is the

simplest method of exclusion in which transposition of equations

for unknowns is not done.* This observation makes it possible /34

to regard the entire problem somewhat differently.

3) The system of linear difference equations with (linear)

boundary conditions behaves as the sum of of the specific system

of linear equations. It gives us some "reliable" method of solv-

ing linear systems satisfying the requirement for the necessary

quantities of calculations proportional to the number of points

(and not K2 or K3).

Such a requirement satisfies the Gauss exclusion method with

a selection of the main element by column. Undoubtedly, it is

suitable for the solution of any well-established difference bou-

dary problem for a not-too-large K**.

*Therefore the "die" is suitable to problem (S-3) not for all
aK BK CK•

**The role of errors of curvature for large K is needed in a
separate study (cf. Sect. 38 with Ref. 52).

29



The direct course of the method of exclusion is, in this, an

analog to the "transfer of boundary conditions" from left to right,

although the R (x ) are in explicit form and do not appear.

4) We shall write the algorithm used for our problem.

For the chosen linearization* on the ray in each "internal

iteration" we obtain a system of three related and different equa-

tions for ul, T, b and a separate equation for u.

This equation of the type (D-3) is easily solved by the die

method. A system of three different equations corresponding to

equations (6), (8), and (9) is obtained. u = U is written in

the form:

1", e ll + f 7 01 L f i , + ' . "

'I (S-5.1)

2) K, 6 '4,, ,.J K.,2, T (s-5.2) /35

3) f.,T -" '.T,.u2m.1 ., C,,., , , , O. (S-5.3)

Here K, L, A, B, C, D are functions of m.

n=, ..... ] / in (1) and (2); m I,2 .- f in (3).

Boundary conditions.

Lower: a is given (or Uo = 0),

T is given, (S-6)

Upper: 7 - . ,/ 2' .

The algorithm we used for solving the problems (S-5, S-6) consist

of the following steps.

Step One

It is assumed** that as a consequence of the boundary condi-

*In each iteration "according to 0" numbers containing u in (6)
and (9) are taken from the afore-mentioned iteration.
** It is easily shown that as a consequence of the boundary
condition Tu = Tu-1, there are three relations connecting U, T, alm+l
and U, T, a/m. The possibility of solving them for U, T,am+l
is already assumed.
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tion Tu = Tu-, there are the following three relations (cf. S-4):

Inserting them in (S-5) it is not difficult to obtain recurrent

relations expressing L, B, y, 6/m as a, B,y, 6/m-1. As initial /36

values for m = U-1 we have:

The remaining coefficients for m = u-1 are easily found from

equations (S-5.1) and (S-5.2) for m = u-1. Thus the first step

consists of successively finding d, 8, y, 6, from m = u-1 to

m = 0.

Step Two

As a consequence of the boundary condition

and the relation (S-7), there is the following connection between

the quantities in one point.

~ +S~irnQO.(S -8)

The coefficients a4, B4 , Y4 64 are also easily found in recurrent

form from m = u-2 to m = 0.

In the third step, from relation (-8) and the two lower boun-

dary conditions, a is found.

Of course, in the fourth step from the recurrent formula (- 7)

the successively found U, T, a for all = 1,2,...U. The analog of

the algorithm described from the "die" method for equations (S-3)

is obvious.

5. We shall interpret the described algorithm in the spirit

of the considerations of paragraph 1. The system (S-5) has in the

aggregate four orders. Its solution is completely determined by

its values in points m and m+l, however these values may not be

assigned arbitrarily: (S-5.1) and (S-5.2) yield two connections.

*Translation Note: Original text fails to label S-7



We shall introduce the 6-dimensional space:
R .x .)=U m  U /37

m Tm Tm+ 1

m m+l
am Im+l

All solutions of ("S-5) contain in them the 4-dimensional

hyperplane of the given equations (S .1) and (-5.2).

Those solutions of (S-5) which satisfy the condition T =

Tu_ 1 are contained in R (xm) of the three-dimensional hyperplane

R (xm).

(S-7) is an equation of this hyperplane. In the selected

form of notation of these equations is the assumption that the

coefficient for U, T, b/m+l do not go to zero.

Solutions satisfying the two upper boundary conditions are

contained in the R6 (xm) two-dimensional hyperplane R24(.xm). It

should be assigned by four equations.

As such, we have chosen (S-7) and (S-8). Thus, the first

two steps are the "transfer of boundary conditions" from upper

to lower.

Step three is the use of lower boundary conditions.

The fourth step is finding the unknown. In this we auto-

matically find ourselves for each m in R3 (xm), but (S-8) is not

used and could be violated in terms of errors of curvature. In

our calculations the boundary condition Uu- 2Un l+Uu_2 = 0 was

accurately fulfilled, i.e. this possibility was not realized.
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winds at altitudes of 150 and
320 km during low solar activity.
Notation same as for Fig. 3.
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